Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(8): 3091-3098, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665895

RESUMO

Electrochemical CO2 reduction (CO2R) using heterogenized molecular catalysts usually yields 2-electron reduction products (CO, formate). Recently, it has been reported that certain preparations of immobilized cobalt phthalocyanine (CoPc) produce methanol (MeOH), a 6-electron reduction product. Here, we demonstrate the significant role of intermediate mass transport in CoPc selectivity to methanol. We first developed a simple, physically mixed, polymer (and polyfluoroalkyl, PFAS)-free preparation of CoPc on multiwalled carbon nanotubes (MWCNTs) which can be integrated onto Au electrodes using a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) adhesion layer. After optimization of catalyst preparation and loading, methanol Faradaic efficiencies and partial current densities of 36% (±3%) and 3.8 (±0.5) mA cm-2, respectively, are achieved in the CO2-saturated aqueous electrolyte. The electrolyte flow rate has a large effect. A linear flow velocity of 8.5 cm/min produces the highest MeOH selectivity, with higher flow rates increasing CO selectivity and lower flow rates increasing the hydrogen evolution reaction, suggesting that CO is an unbound intermediate. Using a continuum multiphysics model assuming CO is the intermediate, we show qualitative agreement with the optimal inlet flow rate. Polymer binders were not required to achieve a high Faradaic efficiency for methanol using CoPc and MWCNTs. We also investigated the role of formaldehyde as an intermediate and the role of strain, but definitive conclusions could not be established.

2.
ACS Catal ; 14(5): 3128-3138, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449526

RESUMO

Electrochemical CO2 reduction on Cu is a promising approach to produce value-added chemicals using renewable feedstocks, yet various Cu preparations have led to differences in activity and selectivity toward single and multicarbon products. Here, we find, surprisingly, that the effective catalytic activity toward ethylene improves when there is a larger fraction of less active sites acting as reservoirs of *CO on the surface of Cu nanoparticle electrocatalysts. In an adaptation of chemical transient kinetics to electrocatalysis, we measure the dynamic response of a gas diffusion electrode (GDE) cell when the feed gas is abruptly switched between Ar (inert) and CO. When switching from Ar to CO, CO reduction (COR) begins promptly, but when switching from CO to Ar, COR can be maintained for several seconds (delay time) despite the absence of the CO reactant in the gas phase. A three-site microkinetic model captures the observed dynamic behavior and shows that Cu catalysts exhibiting delay times have a less active *CO reservoir that exhibits fast diffusion to active sites. The observed delay times and the estimated *CO reservoir sizes are affected by catalyst preparation, applied potential, and microenvironment (electrolyte cation identity, electrolyte pH, and CO partial pressure). Notably, we estimate that the *CO reservoir surface coverage can be as high as 88 ± 7% on oxide-derived Cu (OD-Cu) at high overpotentials (-1.52 V vs SHE) and this increases in reservoir coverage coincide with increased turnover frequencies to ethylene. We also estimate that *CO can travel substantial distances (up to 10s of nm) prior to desorption or reaction. It appears that active C-C coupling sites by themselves do not control selectivity to C2+ products in electrochemical COR; the supply of CO to those sites is also a crucial factor. More generally, the overall activity of Cu electrocatalysts cannot be approximated from linear combinations of individual site activities. Future designs must consider the diversity of the catalyst network and account for intersite transportation pathways.

3.
Nat Nanotechnol ; 19(3): 269-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151643
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...